Robust vehicle detection in different weather conditions: Using MIPM
نویسندگان
چکیده
Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.
منابع مشابه
Reducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کاملReducing Light Change Effects in Automatic Road Detection
Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...
متن کاملOcclusion Robust and Environment Insensitive Algorithm for Vehicle Detection and Tracking Using Surveillance Video Cameras
With the decreasing price of video cameras and their increased deployment on roadway networks, traffic data collection through video imaging has grown in popularity. Numerous vehicle detection and tracking algorithms have been developed for video sensors. However, most existing algorithms function only within a narrow band of environmental conditions and occlusion-free scenarios. In this study,...
متن کاملImproving vehicle tracking rate and speed estimation in dusty and snowy weather conditions with a vibrating camera
Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter...
متن کاملTraffic Condition Detection in Freeway by using Autocorrelation of Density and Flow
Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...
متن کامل